Competition and cooperation of sulfate reducing bacteria and five other bacteria during oil production
Summary
Effective control of sulfate-reducing bacteria (SRB) will help reduce economic losses and prevent threats to human health during the oil production. In this study, the responses of SRB to environmental variables and some functional microorganisms (including denitrifying bacteria (DNB), methanogenic bacteria (MGB), saprophytic bacteria (SPB), zymophyte bacteria (ZPB), and iron bacteria (IB)), during oil production processes were investigated to improve our understanding of how to control SRB abundance. Correlation analyses demonstrated that nitrate and redox potential exihibited significant inhibitory effects on the growth and reproduction of SRB and redox potential (0.175, P < 0.01) had a stronger effect than NO3− (0.0817, P < 0.05). PCA analysis demonstrated a clear division of the bacteria into two clusters, cluster 1 consisted of SRB, SPB and IB, while cluster 2 consisted of DNB, MGB and ZPB. Cooperation was apparent for SRB with SPB and IB, while competition was apparent for SRB with DNB, MGB and ZPB. These results provide new insights to possible solutions to control SRB growth in the oilfield environment, including addition of nitrate and nitrite, to promote the growth of denitrifying bacteria, thereby suppressing the growth of SRB.