To main content
Norsk
Publications

Alternative Biosynthetic Starter Units Enhance the Structural Diversity of Cyanobacterial Lipopeptides

Academic article
Year of publication
2019
Journal
Applied and Environmental Microbiology
External websites
Cristin
Arkiv
Doi
Contributors
Jan Mareš, Jan Hájek, Petra Urajová, Andreja Kust, Jouni Jokela, Kumar Saurav, Tomáš Galica, Kateřina Čapková, Antti Mattila, Esa Haapaniemi, Perttu Permi, Ivar Mysterud, Olav M Skulberg, Jan Karlsen, David P Fewer, Kaarina Sivonen, Hanne Hjorth Tønnesen, Pavel Hrouzek

Summary

Puwainaphycins (PUWs) and minutissamides (MINs) are structurally analogous cyclic lipopeptides possessing cytotoxic activity. Both types of compound exhibit high structural variability, particularly in the fatty acid (FA) moiety. Although a biosynthetic gene cluster responsible for synthesis of several PUW variants has been proposed in a cyanobacterial strain, the genetic background for MINs remains unexplored. Herein, we report PUW/MIN biosynthetic gene clusters and structural variants from six cyanobacterial strains. Comparison of biosynthetic gene clusters indicates a common origin of the PUW/MIN hybrid nonribosomal peptide synthetase and polyketide synthase. Surprisingly, the biosynthetic gene clusters encode two alternative biosynthetic starter modules, and analysis of structural variants suggests that initiation by each of the starter modules results in lipopeptides of differing lengths and FA substitutions. Among additional modifications of the FA chain, chlorination of minutissamide D was explained by the presence of a putative halogenase gene in the PUW/MIN gene cluster of Anabaena minutissima strain UTEX B 1613. We detected PUW variants bearing an acetyl substitution in Symplocastrum muelleri strain NIVA-CYA 644, consistent with an O-acetyltransferase gene in its biosynthetic gene cluster. The major lipopeptide variants did not exhibit any significant antibacterial activity, and only the PUW F variant was moderately active against yeast, consistent with previously published data suggesting that PUWs/MINs interact preferentially with eukaryotic plasma membranes.