The Thermodynamics of Heavy Metal Sorption onto Lignocellulosic Biomass
Summary
The sorption equilibrium and thermodynamics of Cu(II), Ni(II), Pb(II), and Cd(II) onto grape stalks (GS), a lignocellulosic waste from wine production industries, have been investigated. Different equilibrium models have been assessed to describe the experimental sorption equilibrium profile in the range of 5–60°C. Maximum sorption capacities have been calculated by means of Langmuir equilibrium model and mean free sorption energies through the Dubinin-Radushkevich (D-R) model. Mean free energies suggest that metal sorption takes place mainly through an ion exchange mechanism, except for Pb(II), where an additional contribution connected to a stronger bond might take place. The calculation of thermodynamic parameters, ΔG0, ΔH0 and ΔS0, puts into evidence that the sorption of all the metals onto GS is a spontaneous and exothermic process that occurs with an increase of randomness at the solid/liquid interface.