Assessing the Ecotoxicological Impact of **Plastic-Associated Chemicals from Consumer Products on the Marine Environment: Using Atlantic Halibut (***Hippoglossus hippoglossus***)** Hepatocytes

Norwegian Institute for Water Research

Maria T. Hultman^{*,1}, Prem Chand¹, Cassandra Rauert², Pradeep Dewapriya², Kevin Thomas² & Tânia Gomes¹

Introduction

The increasing amount of microplastics resulting from fragmentation & degradation of marine litter are well documented, but the environmental risks of plasticassociated chemicals in consumer products are emerging as a much lesser understood threat to the marine environment.

* The aim of this study was to investigate the toxic effects of plastic-associated chemicals originating from consumer products in a marine fish species relevant to the Norwegian environment. We developed a reproducible, cost-effective New Approach Method (NAM) using primary liver (hepatic) cells from the marine Atlantic Halibut (*Hippoglossus hippoglossus*). Following implementation, the toxicity of leachates from five different consumer products were assessed using the primary hepatocytes.

Leachate preparation Non-target & Suspect chemical analysis

14 days leaching

In vitro experimental design

Figure 2. Hepatocyte isolation procedure using ex vivo pancreatin digestion with modifications i.e., no histopaque, [1].

Figure 1. Five plastic consumer products (CTG, DG, SS, BAL & PET) were cryomilled & sieved in a size range of <500µm. The particles were leached at 150 rpm for 14 days in Milli-Q water, in the dark at 20°C. Following leaching, particles were removed by filtering the solution (0.22µm filter) & aliquotes frozen at -20°C until further analysis. Leachates were subjected to suspect & non-targeted chemical analysis using LCMS (SCIEX X500R QTOF system with UHPLC, LC-QToF). Additional extracts were prepared following the same procedure for further in vitro toxicity assessments.

Figure 3. Isolated primary hepatocytes were plated (96 well plate) & acclimatized 24h prior to assessing the assay's sensitivity, responsiveness, reproducibility & endpoint suitability, when exposed to a solvent control (DMSO) & positive controls for the following endpoints: Cytotoxicity: Cell membrane integrity & Metabolic activity (Copper sulphate, Cu), Cytosolic Reactive Oxygen Species, ROS (Cu/H_2O_2), Vitellogenin, Vtg (β -Estradiol, E2), Ethoxyresorufin-O-deethylase, EROD & Cytochrome P450 1A, CYP1A (2,3,7,8-Tetrachlorodibenzodioxin, TCDD) for 48 & 96 hours [2]. Following its assessed suitability, the assay was utilized to assess toxicity of a leachate control (only Milli-Q water) & five consumer product leachates: CTG, DG, SS, BAL & PET (0.0033 – 33.3 g/L) for 48 & 96 hours.

Results

Chemical feature extraction

Figure 4: Non-targeted chemical analysis & suspect screening of leachates originating from five different plastic consumer products (A). A total 1298 unique chemical features were identified in the different products & plotted in a principal component analysis (PCA) (B). The PCA displayed the chemicals to be clearly grouped in their individual leachates. Chemicals found in different leachates & intensity across the leachates (obtained by LC-QToF) displayed that several were present in more than one leachate (C).

Β.

Primary halibut hepatocytes

In vitro exposure

Conclusion

Chemical suspect screening identified CTG > DG > BAL as containing the highest number of unique chemical features.

Figure 5. Primary hepatocytes isolated from juvenile Atlantic Halibut. A light microscope was utlized to assess cell viability using Trypan blue (A) & cell diameter (B). Cell diameter was Ø $15.1 \pm 2.4 \ \mu m$ (mean \pm SD). Visual inspection of the cells implies minimum two different populations (lipid droplets & complexity). Cell viability was 96.6 ± 5.1 % (mean ± SD) in three independent cell isolations.

References: [1] Figueiredo et al. Int J of Env Res and Pub Heal. 2021; 18(4), p.1380; [2] Petersen et al. Aquat tox. 2017; 187, 141-152.

· 100

- 80

- 60

- 40

& membrane integrity (0) as measures for cytotoxicity in Atlantic Halibut primary cells exposed for 48h (TCDD) & 96h (E2 & Cu). The data (mean ± standard deviation) represent one independent cell isolation & exposure study.

rctivity v ctl)

Chemicals present in leachates that might be of Testosterone, 2-Mercaptoconcern, e.g. benzothiazole, dicyclohexylamine, etc.

✤ The in vitro approach was highly suitable for chemical toxicity assessment, as it had sensitive & responsive cytotoxicity to the positive controls at 48 & 96h, in accordance with literature [2]. The highly suitable for further toxicity assay is assessment of the five leachates.

Future work

The in vitro toxicity assessment to the five leachates is currently ongoing, focusing on cytotoxicity, EROD, CYP1A, Vtg & ROS.

Contact: mhu@niva.no

Affiliations: ¹Norwegian Institute for Water Research (NIVA), Oslo, Norway; ² University of Queensland, Queensland Alliance for Environmental Health Sciences Faculty of Health and Behavioural Sciences, Brisbane, Australia.

10-4

10⁻³

Cu (M)

7e+007

6e+007

6e+007

5e+007

5e+007

4e+007

4e+007

3e+007

3e+007

2e+007

2e+007

1e+007

5000000