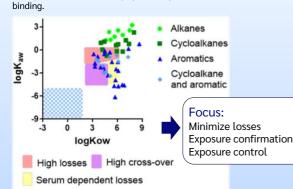
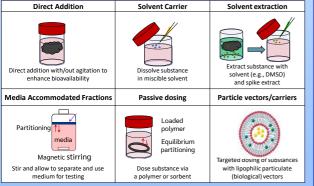

Critical review of *in vitro* dosing methods for petroleum UVCBs

Lillicrap A¹, Hultman MT¹, Georgantzopoulou A¹, Christou M¹, Song Y¹, Mentzel, S¹, **Wennberg AC**¹, Deglin S², Krzykwa J², Embry M², Mayer P³, Birch H³, Saunders D^{4,5}, Sourisseau S^{5,6}, Prosser C^{6,7}, Colvin K^{5,8}, Villalobos S^{5,9}, Synhaeve N¹⁰, Lyon D¹⁰ and Saunders L¹⁰


INTRODUCTION

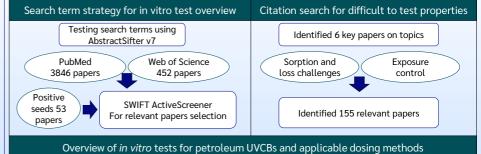
- In vitro tests will be used in place of whole organism in vivo testing for regulatory chemical assessments.
- Petroleum UVCB substances (Unknown, Variable composition, Complex reaction products, or Biological origin) typically contain a large number and variety of hydrophobic and (semi)volatile hydrocarbon constituents.
- Establish, maintain and confirm defined test substance concentrations throughout the test is challenging for *in vitro* tests for these substances.
- A systematic review on the state of science of *in vitro* dosing methods, their challenges, and their applicability in (eco)toxicological assessments of petroleum UVCBs.


OBJECTIVE: ADDRESS LOSSES AND OTHER CHALLENGES

- Plastic well plates have high surface area to volume ratios that increase the potential for sorption to plate walls;
- Volatile constituents can potentially cross-contaminate adjacent wells;
 Poor solubility of hydrophobic constituents in biological media containing lipids and proteins may lead to differential

Soluble substances with low volatility

Figure 1: Chemical space with observed chemical behavior in a plastic 96-well microplate after incubation for 24 hours at 37° C (Birch *et al.*, 2019). The data points represent different subclasses of petroleum hydrocarbons covering a carbon number range from C8 to C20 (Birch *et al.*, 2018).


Figure 2: Examples of possible *in vitro* dosing methods for petroleum UVCBs

FUTURE IMPACT

- Will help address the critical challenge of petroleum UVCB dosing and improve the reliability of testing.
- Will ultimately help improve the risk assessment of petroleum UVCBs.
- Will aid hazard and risk assessments of other non-petroleum UVCBS.

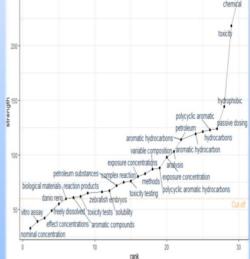

<u>ali@niva.no</u> <u>acw@niva.no</u> ecotox@niva.no METHOD: CRITICAL LITERATURE REVIEW SEARCH STRATEGY

Figure 2: Flow of literature search strategy: A wide literature search was initiated in PubMed and Web of Science, and 4285 papers are being screened using the tool SWIFT ActiveScreener (Howard et al., 2020). In parallel, a citation search was performed based on 6 papers, each relevant to the topics of Sorption and loss challenges and Exposure control.

Search terms	In vitro *	Ames **	FET ***	
Direct addition + UVCB	294	67	3	
Solvent carrier + UVCB	64	11		
Passive dosing + UVCB	10	2		
MAF****+ UVCB	3			
WAF***+ UVCB	12	13	14	
Passive dosing + hydrophobic	19	3	5	
UVCB	8	4	1	
Petroleum + volatile	2450	407	15	
Petroleum + hydrophobic	355	34	3	
Petroleum + complex	200	51	3	
Multi-constituent	24	3		
*In vitro: In vitro Techniques OR cell culture OR " <i>in vitro</i> " OR cell-based				
**Ames test: mutagenicity tests mutagenicity	OR mutag	ens OR		
OR mutagenic or "gene mutation" OR "ames" " OR "comet assay"				
*** FET test: (zebrafish AND embryo) OR FET test				
**** MAF/WAF: Media/Water-accommodated fraction				

 Table 1: Heat map of the number of PubMed articles retrieved using AbstracSifter V7 (Adkins et al., 2022) for 3 categories of assays combined with different descriptors for test compounds + dosing method.

Figure 4: Key words relevance analysis using litsearchr R tool (Grames *et al.*, 2019) from 53 papers identified by expert judgement, and later imported in the SWIFT ActiveScreener tool as positive seeds.

NEXT STEPS		
		Evaluation of the relevance of selected literature
n		Compilation of a list of <i>in vitro</i> methods used for UVCB testing
~		Evaluation of the applicability of different dosing methods
11		Development of recommendations
		References: Adkins et al., (2022). U.S. Environmental Protection Agency. Birch et al., (2019). Chem. Res. in Toxicol. 32, 1780-1790.

Birch et al., (2019). Chem. Res. in Toxico 32, 1780-1790. Birch et al., (2019). Chem. Res. in Toxico 32, 1780-1790. Grames et al., (2019). Methods Ecol Evol. 10: 1645-1654. Howard et al., (2020). Environment international, 138, 105623.

Affiliations: (1) Norwegian Institute for Water Research (NIVA), Norway; (2) Health and Environmental Sciences Institute (HESI), USA; (3) Technical University of Denmark (DTU), Denmark; (4) Shell Global Solutions, Netherlands; (5) Member of Concawe, Belgium; (6) TotalEnergies, France; (7) ExxonMobil, USA; (8) BP I&E Applied Sciences, UK; (9) BP, USA; (10) Concawe, Belgium.

